

TROPICS Pathfinder Evaluation

Tomorrow.io Space NWP/DA Team: Joe Munchak (ioe munchak@tomorrow.io), Ricky Roy, Jeff Steward, Xiaoxu Tian

February 2022

Areas of Evaluation

- Overall Reliability
 - What fraction of orbits have useful data?
- Calibration
 - GMI single differences
 - RTTOV/ERA5 Obs-sim
 - Calibration stability over time
- Geolocation
 - $\circ \qquad \text{Coastline obs vs meas}$
- Precipitation Detection and Retrieval
 - Initial study from pre-launch databases
 - Comparisons with MRMS

TROPICS Pathfinder Data Availability and Reliability

Calibration Assessment

Method: GMI coincident overpasses (< 5 min time difference, <15 km distance, <1° EIA difference), ~18,000 matched observations, GMI spatially averaged to match TROPICS FOV size

Calibration Assessment

Method: comparing observed brightness temperature to the RTTOV simulated ones, calculated with TROPICS data from Aug. 8 to Sep. 9, 2021 and hourly ERA5 data at 0.25° resolution. Filtered for calibration flags, ERA5 CLW, and observed precipitation scattering. Color scale is In(counts).

Biases with respect to observed Tbs when compared with RTTOV simulations and GMI

Proprietary and Confidential

6

Biases with respect to Earth incidence angle when compared with RTTOV simulations and GMI

Proprietary and Confidential

Calibration Stability (unflagged observations only)

€ 300

300

200 -10 200 -

200 -

300

200 -

300

200

200 -

300

200 -

200

300

200 -

300 ·

200 -

9 Ch 12 Tb (K)

Geolocation

"Knowledge is good, control is not as good"

Verified by interpolating obs to constant scan angles

Tomorrow.io's CBAM model database developed for radar and sounder OSSEs

Squall line and scattered convection on 8/11/2021 at 2015 UTC

Proprietary and Confidential

Example of MCS over Kansas/Missouri on 8/13/2021 at 0800 UTC

Proprietary and Confidential

Storm with mountain snow on 10/12/2021 at 2130 UTC

MRMS Precipitation Type

Retrieved Solid Fraction No ancillary data (T2m or TCWV) was used in retrieval!

Summary

- TROPICS Pathfinder data release has been examined for calibration/geolocation and precipitation utility.
- Some significant biases are present relative to GMI and RTTOV simulations in some channels
 - Channels 1 and 12 have EIA- and surface-dependent biases suggesting that polarization mix, channel mix, and/or emissivity model error could be playing a role
 - Most other channels have a slight (< 5K) cold bias
 - Channels 5,7, 11 appear to be least biased
- Stability range is ~2K at the G-band channels, relative to GMI
- There is clear value of TROPICS channel set for precipitation retrieval
 - Good skill in detecting rain rate > 0.1 mm/hr
 - Some skill in distinguishing rain/snow without ancillary data
 - More work to be done with observational databases